Schur complements, Schur determinantal and Haynsworth inertia formulas in Euclidean Jordan algebras
نویسندگان
چکیده
Article history: Received 5 May 2009 Accepted 15 November 2009 Available online 22 December 2009 Submitted by H. Schneider
منابع مشابه
More results on Schur complements in Euclidean Jordan algebras
In a recent article [8], Gowda and Sznajder studied the concept of Schur complement in Euclidean Jordan algebras and described Schur determinantal and Haynsworth inertia formulas. In this article, we establish some more results on the Schur complement. Specifically, we prove, in the setting of Euclidean Jordan algebras, an analogue of the Crabtree-Haynsworth quotient formula and show that any S...
متن کاملSome inequalities involving determinants, eigenvalues, and Schur complements in Euclidean Jordan algebras
In this paper, using Schur complements, we prove various inequalities in Euclidean Jordan algebras. Specifically, we study analogues of the inequalities of Fischer, Hadamard, Bergstrom, Oppenheim, and other inequalities related to determinants, eigenvalues, and Schur complements.
متن کاملOn the Inheritance of Some Complementarity Properties by Schur Complements
In this paper, we consider the Schur complement of a subtransformation of a linear transformation defined on the product of two finite dimensional real Hilbert spaces, and in particular, on two Euclidean Jordan algebras. We study complementarity properties of linear transformations that are inherited by principal subtransformations, principal pivot transformations, and Schur complements.
متن کاملSchur Complements in C∗− Algebras
The formula (1) was first used by Schur [22], but the idea of the Schur complement goes back to Sylvester (1851), and the term Schur complement was introduced by E. Haynsworth [16]. In the beginning Schur complements were used in the theory of matrices. M.G. Krein [19] and W.N. Anderson and G.E. Trapp [4] extended the notion of Schur complements of matrices to shorted operators in Hilbert space...
متن کاملGeneralized Schur complements of matrices and compound matrices
In this paper, we obtain some formulas for compound matrices of generalized Schur complements of matrices. Further, we give some Löwner partial orders for compound matrices of Schur complements of positive semidefinite Hermitian matrices, and obtain some estimates for eigenvalues of Schur complements of sums of positive semidefinite Hermitian matrices.
متن کامل