Schur complements, Schur determinantal and Haynsworth inertia formulas in Euclidean Jordan algebras

نویسندگان

  • M. Seetharama Gowda
  • Roman Sznajder
چکیده

Article history: Received 5 May 2009 Accepted 15 November 2009 Available online 22 December 2009 Submitted by H. Schneider

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

More results on Schur complements in Euclidean Jordan algebras

In a recent article [8], Gowda and Sznajder studied the concept of Schur complement in Euclidean Jordan algebras and described Schur determinantal and Haynsworth inertia formulas. In this article, we establish some more results on the Schur complement. Specifically, we prove, in the setting of Euclidean Jordan algebras, an analogue of the Crabtree-Haynsworth quotient formula and show that any S...

متن کامل

Some inequalities involving determinants, eigenvalues, and Schur complements in Euclidean Jordan algebras

In this paper, using Schur complements, we prove various inequalities in Euclidean Jordan algebras. Specifically, we study analogues of the inequalities of Fischer, Hadamard, Bergstrom, Oppenheim, and other inequalities related to determinants, eigenvalues, and Schur complements.

متن کامل

On the Inheritance of Some Complementarity Properties by Schur Complements

In this paper, we consider the Schur complement of a subtransformation of a linear transformation defined on the product of two finite dimensional real Hilbert spaces, and in particular, on two Euclidean Jordan algebras. We study complementarity properties of linear transformations that are inherited by principal subtransformations, principal pivot transformations, and Schur complements.

متن کامل

Schur Complements in C∗− Algebras

The formula (1) was first used by Schur [22], but the idea of the Schur complement goes back to Sylvester (1851), and the term Schur complement was introduced by E. Haynsworth [16]. In the beginning Schur complements were used in the theory of matrices. M.G. Krein [19] and W.N. Anderson and G.E. Trapp [4] extended the notion of Schur complements of matrices to shorted operators in Hilbert space...

متن کامل

Generalized Schur complements of matrices and compound matrices

In this paper, we obtain some formulas for compound matrices of generalized Schur complements of matrices. Further, we give some Löwner partial orders for compound matrices of Schur complements of positive semidefinite Hermitian matrices, and obtain some estimates for eigenvalues of Schur complements of sums of positive semidefinite Hermitian matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009